Monthly Archives - September 2014

Doing the Wave: Connecting Physics to Baseball [W/Video]

Ever heard the crack of a bat when a hitter launches a homerun? Well there’s a wave that’s responsible for that sound. Watch the video to learn how waves are an integral part of baseball. Who knew!

About the Author

Dr. David Kagan has been at CSU Chico for over thirty years. During this time, Dr. Kagan has served in numerous roles including: Chair of the Department of Physics; founding Chair of the Department of Science Education; and Assistant Dean in the College of Natural Sciences to name a few. He is a regular contributor to The Physics Teacher having had over thirty papers published in the journal. Kagan continues his deep devotion to quality teaching by avidly engaging his students with methodologies adapted from the findings of Physics Education Research. In addition, he has remained true to his lifelong obsession with baseball by using the national pastime to enhance the teaching and learning of physics.

Recommend Tools

Spring Wave

In Stock SKU: P7-7220

Standing Wave Kit (10pk)

In Stock SKU: P6-7700

Super Springy

In Stock SKU: 33-0130

Helical Spring

In Stock SKU: 33-0140

Wave Sticks

In Stock SKU: P7-7310

Sound and Wave Discovery Pack

In Stock SKU: P7-2030

Help Students Reach the Ultimate Form Of Scientific Inquiry

Back to School Means Back to STEM

The Next Generation Science Standards ( identifies eight practices of science and engineering as essential for all students to learn. These are:


  1. Asking questions (for science) and defining problems (for engineering)
  2. Developing and using models
  3. Planning and carrying out investigations
  4. Analyzing and interpreting data
  5. Using mathematics and computational thinking
  6. Constructing explanations (for science) and designing solutions (for engineering)
  7. Engaging in argument from evidence
  8. Obtaining, evaluating, and communicating information


One of the best ways to implement all of these practices is through the growing practice of Project Based Learning (PBL), defined by Edutopia as “a dynamic classroom approach in which students actively explore real-world problems and challenges and acquire a deeper knowledge” ( The duration of these projects can be as short as a single class period or last throughout an entire school year, but typically last from 1-3 weeks.


This past summer, Grade 6 – 9 science teachers, math teachers, and administrators from Warsaw (IN) Community Schools partnered with science and math educators from Ball State University during a two week summer institute to design classroom projects, strengthen science and math content knowledge, and refine inquiry practices. The Arbor Scientific “Pull-Back Car” ( was featured in a “mini” PBL activity to illustrate how science, technology, engineering, and mathematics (STEM) can be integrated into an authentic data collection and analysis activity.


Participants were divided into 12 groups and each group of 4-5 participants was given a pull-back car. Each participant played the role of a quality control engineer, whose job description may include taking “part in the design and evaluation of the product” and being “responsible for making sure that the materials meet the requisite standards and that the equipment works correctly” ( Each group served as a team of quality control engineers who were instructed to design and conduct tests on these cars to determine if Arbor Scientific should continue selling them.

The engineering teams addressed four questions about the cars:

  1. 1. How consistent is the distance an individual pull-back car travels after being pulled back a specified distance?
  2. 2. How consistent is the amount of time an individual pull-back car travels after being pulled back a specified distance?
  3. 3. How straight does an individual pull-back car travel?
  4. 4. Do all pull-back cars behave similarly?


Each team was charged with designing an experiment to answer their quality question, conducting the trials, analyzing their results, summarizing their findings on poster paper, and reporting their results to the large group.   Groups scattered in and around the building to design and conduct their trials.



After completing the data collection portion of the activity, groups returned to their tables to analyze their data and report their results.
After each group had completed their tasks, each group presented their findings. Examples of summary posters are shown below.
Screen Shot 2014-08-21 at 2.01.19 PM
Once the participants had a good idea of how consistent the cars were, these cars were again used later in the summer institute to investigate additional inquiry questions, such as:

  1. 1. How does the distance the car is pulled back before release affect the total distance it travels?
  2. 2. How does the distance the car is pulled back before release affect the total time it travels?
  3. 3. How does additional weight affect the distance the car travels when pulled back a specified distance?
  4. 4. How does additional weight affect the total time the car travels when pulled back a specified distance?
  5. 5. How does the angle of incline affect the distance the car travels when pulled back a specified distance?
  6. 6. How does the angle of incline affect the total time the car travels when pulled back a specified distance?


Despite slight inconsistencies in the behaviors of the cars, participants in this summer institute agreed that the Arbor Scientific Pull-Back Car is an excellent inexpensive product that can be used in many different investigations – especially when one wants to integrate aspects of STEM. These cars can be used at any grade level and provide countless opportunities for students to engage in authentic scientific inquiry. They also provide an inexpensive way for math teachers to incorporate real world data collection and analysis. As a science educator, I heartily recommend this product and can honestly say that I consider it the ultimate inquiry device!

Download this article as a PDF

Dr. Joel Bryan

Ball State University

Muncie, Indiana

Dr. Bryan teaches at Ball State for the Department of Physics and Astronomy. He taught all levels of high school physics (Pre-AP, AP, conceptual) and a variety of mathematics courses for 13 years before receiving his Ph.D. in curriculum and instruction at Texas A&M University.


Recommended Tools


Acceleration Car

In Stock SKU: P4-1980

Constant Velocity Car (Carts)

In Stock SKU: 44-1090



Toy Box Physics: smoke rings, mushroom clouds and vortexes

This was the winning entry for the Toy Box Physics Contest by James Lincoln. He describes how vortices / vortexes are made and shows how to make them. He also shows when they occur in nature, including the mushroom cloud, dolphins and an air cannon.

  James Lincoln

Tarbut V’ Torah High School

Irvine, CA, USA

James Lincoln teaches Physics in Southern California and has won several science video contests and worked on various projects in the past few years.  James has consulted on TV’s “The Big Bang Theory” and WebTV’s “This vs. That”  and  the UCLA Physics Video Project.

Contact: [email protected]


Recommended Tools

Smoke Ring Cannon

In Stock SKU: P8-5800

Airzooka Air Cannon

In Stock SKU: P8-5700

Fog in a Can

In Stock SKU: P2-7750

Super Fog Machine

In Stock SKU: P2-7755

Fogger Fluid

In Stock SKU: P2-7755-01